Decidability Questions
for Insertion Systems

Andreas Malcher

Institut fir Informatik, Universitat Giessen,
Arndtstr. 2, 35392 Giessen, Germany
email: malcher@informatik.uni-giessen.de

NCMA 2017, Prague, Czech Republic

Insertion Systems

Insertion Systems

= Introduced in 1981 by Galiukschov as semicontextual
grammars.

Insertion Systems

= Introduced in 1981 by Galiukschov as semicontextual
grammars.

- Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.

Insertion Systems

= Introduced in 1981 by Galiukschov as semicontextual
grammars.

- Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.

- Insertion Systems are an intermediate model between
Chomsky grammars and contextual grammars.

Insertion Systems

Introduced in 1981 by Galiukschov as semicontextual
grammars.

Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.
Insertion Systems are an intermediate model between
Chomsky grammars and contextual grammars.

Strings are only inserted as in contextual grammars and not
rewritten as in Chomsky grammars.

Insertion Systems

Introduced in 1981 by Galiukschov as semicontextual
grammars.

Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.

Insertion Systems are an intermediate model between
Chomsky grammars and contextual grammars.

Strings are only inserted as in contextual grammars and not
rewritten as in Chomsky grammars.

The insertion is controlled by contexts as is done in
context-sensitive (Chomsky) grammars.

Insertion Systems

Introduced in 1981 by Galiukschov as semicontextual
grammars.

Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.

Insertion Systems are an intermediate model between
Chomsky grammars and contextual grammars.

Strings are only inserted as in contextual grammars and not
rewritten as in Chomsky grammars.

The insertion is controlled by contexts as is done in
context-sensitive (Chomsky) grammars.

Insertion systems are a special case of insertion-deletion
systems which have extensively been investigated.

Insertion Systems

An insertion system S is a triple S = (T, A, I), where
= T'is an alphabet,
<+ A C T*is a finite set of axioms, and

2 [CT*x Tt xT*is a finite set of insertion rules.

Insertion Systems

An insertion system S is a triple S = (T, A, I), where
= T'is an alphabet,
<+ A C T*is a finite set of axioms, and
2 [CT*x Tt xT*is a finite set of insertion rules.

For x,y € T we write x = vy, if x = z1uvze and y = xyuavas for
(u,c,v) € I and z1, 29 € T™.

Insertion Systems

An insertion system S is a triple S = (T, A, I), where
= T'is an alphabet,
<+ A C T*is a finite set of axioms, and
2 [CT*x Tt xT*is a finite set of insertion rules.
For x,y € T we write x = vy, if x = z1uvze and y = xyuavas for

(u,c,v) € I and z1, 29 € T™.

The generated language is L(S) = {w | z =* w for some x € A }.

Insertion Systems

An insertion system S is a triple S = (T, A, I), where
= T'is an alphabet,
<+ A C T*is a finite set of axioms, and
2 [CT*x Tt xT*is a finite set of insertion rules.
For x,y € T we write x = vy, if x = z1uvze and y = xyuavas for

(u,c,v) € I and z1, 29 € T™.
The generated language is L(S) = {w | z =* w for some x € A }.
The size of an insertion system is defined by the vector (n,,r),

where the integers n = max{ || | (u,,v) € I},
I = max{ |u| | (u,a,v) € I}, and r = max{ |v]| | (u,a,v) € T }.

Insertion Systems

An insertion system S is a triple S = (T, A, I), where
= T'is an alphabet,
<+ A C T*is a finite set of axioms, and
2 [CT*x Tt xT*is a finite set of insertion rules.
For x,y € T we write x = vy, if x = z1uvze and y = xyuavas for

(u,c,v) € I and z1, 29 € T™.

The generated language is L(S) = {w | z =* w for some x € A }.

The size of an insertion system is defined by the vector (n,,r),
where the integers n = max{ || | (u,,v) € I},
I = max{ |u| | (u,a,v) € I}, and r = max{ |v]| | (u,a,v) € T }.

The family of all systems of size (n,1,7) is denoted by INS!".

Insertion Systems

Example 1
Consider S = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

Insertion Systems

Example 1
Consider S = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S;) = {a™b™ | m > 1}.

Insertion Systems

Example 1
Consider S = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab

Insertion Systems

Example 1
Consider S = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb

Insertion Systems

Example 1
Consider S = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

We obtain that L(S2) = {w € {a,b}" |

wlq = |wlp }-

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

We obtain that L(S2) = {w € {a,b}" |
For example, ab

wlq = |wlp }-

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

We obtain that L(S2) = {w € {a,b}" |
For example, ab = aabb

wlq = |wlp }-

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

We obtain that L(S2) = {w € {a,b}" |
For example, ab = aabb = aababb

wlq = |wlp }-

Insertion Systems

Example 1
Consider S; = ({a, b}, {ab}, {(a,ab,b)}) € INS}".

We obtain that L(S1) = { a0 | m > 1}.
For example, ab = aabb = aaabbb = aaaabbbb.

Example 2
Consider Sy = ({a, b}, {ab, ba}, {(\, ab, \), (X, ba, \)}) € INSJ.

We obtain that L(S2) = {w € {a,b}" | |w|, = |w|; }.
For example, ab = aabb = aababb = aabababb.

Insertion Systems

Example 3

Sg = <{a/7 b? C’ d}?{ab}7 {(a/? C? b)7 (C7 d? b)’ (C’ a? d)7 (a7 b? d)}) be_
longs to INS}"".

Insertion Systems

Example 3
S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}"".

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

Insertion Systems

Example 3

S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}’I.

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

For example, ab

Insertion Systems

Example 3

S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}’I.

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

For example, ab = acb

Insertion Systems

Example 3

S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}’I.

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

For example, ab = acb = acdb

Insertion Systems

Example 3

S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}’I.

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

For example, ab = acb = acdb = acadb

Insertion Systems

Example 3

S3 = ({a,b,c,d}, {ab},{(a,c,b),(c,d,b),(c,a,d),(a,b,d)}) be-
longs to INS}’I.

We obtain that L(S3) = { (ac)”z(db)™ | m > 0,z € {ab,acb} }U
{(ac)"x(db)™ | m > 1,2 € {\ a} } is not regular.

For example, ab = acb = acdb = acadb = acabdb.

Insertion Systems

Theorem

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).
(3) INS™" is incomparable with REG for all m,n > 0.

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).
(3) INS™" is incomparable with REG for all m,n > 0.

(4) For every INS}"' an equivalent context-free grammar
can be constructed.

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).
(3) INS™" is incomparable with REG for all m,n > 0.

(4) For every INS}"' an equivalent context-free grammar
can be constructed.

(5) ,Z(INS§’2) contains a non-semilinear language.

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).
(3) INS™" is incomparable with REG for all m,n > 0.

(4) For every INS}"' an equivalent context-free grammar
can be constructed.

(5) ,Z(INS§’2) contains a non-semilinear language.
(6) Z(INS{"") is incomparable with CFL for all m,n > 2.

Insertion Systems

Theorem

(1) For every INS{"" an equivalent context-sensitive
grammar can be constructed for all m,n > 0.

(2) LNSYY) ¢ 2(INSLY) ¢ Z(INSP?) ... C Z(INSY).
(3) INS™" is incomparable with REG for all m,n > 0.

(4) For every INS}"' an equivalent context-free grammar
can be constructed.

(5) ,Z(INS§’2) contains a non-semilinear language.
(6) L(INS""™) is incomparable with CFL for all m,n > 2.
(7) ZL(INS{""™) is an anti-AFL for all m,n > 0.

Decidability Questions for Insertion Systems

Decidability Questions for Insertion Systems

- Almost no decidability results are known.

Decidability Questions for Insertion Systems

- Almost no decidability results are known.

Theorem

Let S be an INSﬁf with n > 1 and [, > 0. Then, it is decidable in
deterministic polynomial time whether or not L(S) is empty.

Decidability Questions for Insertion Systems

- Almost no decidability results are known.

Theorem

Let S be an INSﬁf with n > 1 and [, > 0. Then, it is decidable in
deterministic polynomial time whether or not L(S) is empty.

Theorem

The fixed membership problem for Z(INSL™) having n > 1 and
I, > 0 is solvable in deterministic polynomial time.

Decidability Questions for Insertion Systems

- Almost no decidability results are known.

Theorem

Let S be an INSﬁ;” with n > 1 and [, > 0. Then, it is decidable in
deterministic polynomial time whether or not L(S) is empty.

Theorem

The fixed membership problem for Z(INSL™) having n > 1 and
I, > 0 is solvable in deterministic polynomial time.

Theorem

Let S be an INSﬁ;T with n > 1 and [, > 0. Then, it is decidable
whether or not L(S) is equal to 7.

Decidability Questions for Insertion Systems

- No undecidability results are known.

Decidability Questions for Insertion Systems

- No undecidability results are known.

- Consider the related concept of pure context-sensitive
grammars (Maurer, Salomaa, Wood [1980]).

Decidability Questions for Insertion Systems

- No undecidability results are known.

- Consider the related concept of pure context-sensitive
grammars (Maurer, Salomaa, Wood [1980]).

- Consider the related concept of sentential forms languages
(Harju, Penttonen [1979]).

Decidability Questions for Insertion Systems

- No undecidability results are known.

- Consider the related concept of pure context-sensitive
grammars (Maurer, Salomaa, Wood [1980]).

- Consider the related concept of sentential forms languages
(Harju, Penttonen [1979]).

- Problem: Both concepts use the rewriting of strings instead of
only inserting strings.

Decidability Questions for Insertion Systems

- No undecidability results are known.

- Consider the related concept of pure context-sensitive
grammars (Maurer, Salomaa, Wood [1980]).

- Consider the related concept of sentential forms languages
(Harju, Penttonen [1979]).

- Problem: Both concepts use the rewriting of strings instead of
only inserting strings.

- However, some ideas of Harju and Penttonen [1979] can be
refined to work for insertion systems as well.

Undecidability Results for Insertion Systems

Theorem

Let S be an INS?’2 and R be a regular language. Then, it is unde-
cidable whether or not R C L(S).

Undecidability Results for Insertion Systems

Theorem

Let S be an INS?’2 and R be a regular language. Then, it is unde-
cidable whether or not R C L(S).

- Reduction from Post’'s Correspondence Problem.

Undecidability Results for Insertion Systems

Theorem

Let S be an INS?’2 and R be a regular language. Then, it is unde-
cidable whether or not R C L(S).

- Reduction from Post’'s Correspondence Problem.

- Use a refinement of the construction given by Harju and
Penttonen [1979].

Undecidability Results for Insertion Systems

Theorem

Let S be an INS?’2 and R be a regular language. Then, it is unde-
cidable whether or not R C L(S).

- Reduction from Post’'s Correspondence Problem.

- Use a refinement of the construction given by Harju and
Penttonen [1979].

= Use the recent result (Halava, Harju, Hirvensalo, Karhumaki
[2008]) that the length of the strings occurring in an instance
can be bounded by 2.

Undecidability Results for Insertion Systems

Theorem

Let S be an INS?’2 and R be a regular language. Then, it is unde-
cidable whether or not R C L(S).

- Reduction from Post’'s Correspondence Problem.

- Use a refinement of the construction given by Harju and
Penttonen [1979].

= Use the recent result (Halava, Harju, Hirvensalo, Karhumaki
[2008]) that the length of the strings occurring in an instance
can be bounded by 2.

Corollary

Let S and S’ be two insertion systems from INS?"Q. Then, it is
undecidable whether or not L(S) C L(S").

Undecidability Results for Insertion Systems

Theorem

Let S and S’ be two insertion systems from INS})’l. Then, it is
undecidable whether or not L(S) = L(S5").

Undecidability Results for Insertion Systems

Theorem

Let S and S’ be two insertion systems from INS})’l. Then, it is
undecidable whether or not L(S) = L(5").

Corollary

Let S and S’ be two insertion systems from INS;’I. Then, it is
undecidable whether or not L(S) C L(S5").

Undecidability Results for Insertion Systems

Theorem

Let S and S’ be two insertion systems from INS})’l. Then, it is
undecidable whether or not L(S) = L(5").

Corollary

Let S and S’ be two insertion systems from INS;’I. Then, it is
undecidable whether or not L(S) C L(S5").

Theorem

Let S and S’ be two insertion systems from INS%’I. Then, it is
undecidable whether or not L(S) N L(S’) is empty.

Undecidability of Finiteness

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

- Encode configurations of counter machines in strings
generated by insertion systems.

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

- Encode configurations of counter machines in strings
generated by insertion systems.

- |Implement the increase or decrease by inserting strings.

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

- Encode configurations of counter machines in strings
generated by insertion systems.

- |Implement the increase or decrease by inserting strings.

- An essential ingredient is the construction of signals.

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

- Encode configurations of counter machines in strings
generated by insertion systems.

- |Implement the increase or decrease by inserting strings.

- An essential ingredient is the construction of signals.

Lemma

It is possible to construct an insertion system from INSé’4 that real-
izes a signal from left to right.

Undecidability of Finiteness

- Use a reduction from the halting problem for two-counter
machines on empty input.

- Encode configurations of counter machines in strings
generated by insertion systems.

- |Implement the increase or decrease by inserting strings.

- An essential ingredient is the construction of signals.

Lemma

It is possible to construct an insertion system from INSé’4 that real-
izes a signal from left to right.

>rrabe<
>rrarrbe<
>rrarrbrre<
>r$rarrbrre<
>rrarrbrre<
>rrarrbrrerr<
>rrarrbr$rerr<

Undecidability of Finiteness

Lemma

It is possible to construct an insertion system from INSS’4 that re-
alizes a signal from left to right followed by a signal from right to
left.

Undecidability of Finiteness

Lemma

It is possible to construct an insertion system from INSS’4 that re-
alizes a signal from left to right followed by a signal from right to
left.

Lemma

It is possible to construct an insertion system from INS;L4 that real-
izes signals bouncing arbitrarily often between the left and the right.

Undecidability of Finiteness

Lemma

It is possible to construct an insertion system from INSS”1 that re-
alizes a signal from left to right followed by a signal from right to
left.

Lemma

It is possible to construct an insertion system from INS;L4 that real-
izes signals bouncing arbitrarily often between the left and the right.

Lemma

It is possible to construct an insertion system from INSS’/1 that re-
alizes a signal rr from left to right that is changed to a signal r'r’
if a certain symbol is found on its way from left to right. Moreover,
such a signal may insert some symbol and continue as signal r'r’.

>rrarrbr$rerr<

>rrarrbor$rcrllr<

>r¥rar$rbor$rcllrllir<
>r¥rarrorrcllrl&lr<
>r¥{rarrorrilcllrl&lr<
>rérarrorrilclé&lrl&lr
>ré{rarrorllrllcl&lrl&lr<
Sré{rarrorllrl&lcl&lrlilr<
>ré{rar$rbor1l$llrl&lcl&lri&lr<
>rérar$rbr11$1&lrl&lcl&lrl&lr<
>rérar$rbllrll1$l&lrl&lcl&lrlilr]
Srérar$rbllrl&l$l&lri&lcl&lriilr]
>rérar$rilbllrl&l$l&lri&lcl&lrlilry
Srérar$rilbl&lrl&l$l1&lri&lcl&lri&lr]
>rrar$llrllbl&lrl&l$lélrl&lclé&lrl&lr
Sré{rar$llrl&lbl&lrl&l$l&lri&lcl&lrl&lr<
>rérarll$llrl&lblélrl&l$l&lri&lcl&lrl&lr<

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§’4. Then, it is undecidable
whether or not L(S) is finite.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS?;’A‘. Then, it is undecidable
whether or not L(S) is finite.

- Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS?;’A‘. Then, it is undecidable
whether or not L(S) is finite.

- Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

= a right part that contains the current value of Counter 1, and

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS?;’A‘. Then, it is undecidable
whether or not L(S) is finite.

- Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

= a right part that contains the current value of Counter 1, and

- a left part that contains the current value of Counter 2.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS?;’A‘. Then, it is undecidable
whether or not L(S) is finite.

- Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

= a right part that contains the current value of Counter 1, and
- a left part that contains the current value of Counter 2.

- The axiom is >=950=1<.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§’4. Then, it is undecidable
whether or not L(S) is finite.

- Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

= a right part that contains the current value of Counter 1, and
- a left part that contains the current value of Counter 2.
- The axiom is >=950=1<.

- Knowing the center part =959=1 the next state can be
determined according to the transition function and the
current value of Counter 1 or Counter 2 has to be changed.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§’4. Then, it is undecidable
whether or not L(S) is finite.

->

LR T . 4

Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

a right part that contains the current value of Counter 1, and
a left part that contains the current value of Counter 2.

The axiom is >=95¢=1<.

Knowing the center part =25p=1 the next state can be

determined according to the transition function and the
current value of Counter 1 or Counter 2 has to be changed.

The current value m of a counter will be encoded by m
symbols 1 in the left or right part of the word.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§"4. Then, it is undecidable
whether or not L(S) is finite.

Undecidability of Finiteness

Theorem
Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

- To increase a counter we basically insert a symbol 1 to the
left or right and update the center.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

- To increase a counter we basically insert a symbol 1 to the
left or right and update the center.

Example:
>=950=1<]
>=95051>1=1<
>=950=251>51>1=1
>=950=258152>1>51>1=1
D>=950=251=252>52>1>51>1=1

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

= To decrease a counter we have to make a valid 1 invalid.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

= To decrease a counter we have to make a valid 1 invalid.

- Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

= To decrease a counter we have to make a valid 1 invalid.

- Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

- Send a signal which checks whether there is a valid 1,

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

= To decrease a counter we have to make a valid 1 invalid.

- Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

- Send a signal which checks whether there is a valid 1,

- make this 1 invalid by inserting 1 in front of it,

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

->

->

J

To decrease a counter we have to make a valid 1 invalid.

Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Send a signal which checks whether there is a valid 1,
make this 1 invalid by inserting 1 in front of it,

check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

->

->

J

To decrease a counter we have to make a valid 1 invalid.

Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Send a signal which checks whether there is a valid 1,
make this 1 invalid by inserting 1 in front of it,

check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Send this information back to the center and update the state
and the status of the counter.

Undecidability of Finiteness

Theorem

Let S be an insertion system from INS§‘4. Then, it is undecidable
whether or not L(S) is finite.

->

->

J

To decrease a counter we have to make a valid 1 invalid.

Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Send a signal which checks whether there is a valid 1,
make this 1 invalid by inserting 1 in front of it,

check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Send this information back to the center and update the state
and the status of the counter.

All tasks can be realized with the constructions provided.

Undecidability Results

Theorem

Let S be an insertion system from INS;A. Then, it is undecidable
whether or not L(S) is finite.

Undecidability Results

Theorem
Let S be an insertion system from INS';A. Then, it is undecidable
whether or not L(S) is finite.

- The insertion system generates finitely many words if and only
if the two-counter machine halts.

Undecidability Results

Theorem
Let S be an insertion system from INS;A. Then, it is undecidable
whether or not L(S) is finite.
- The insertion system generates finitely many words if and only
if the two-counter machine halts.
Theorem

Let S be an insertion system from INS§’4 and R be a regular lan-
guage. Then, it is undecidable whether or not L(5) C R.

Undecidability Results

Theorem
Let S be an insertion system from INS;A. Then, it is undecidable
whether or not L(S) is finite.

- The insertion system generates finitely many words if and only

if the two-counter machine halts.

Theorem
Let S be an insertion system from INS§’4 and R be a regular lan-
guage. Then, it is undecidable whether or not L(5) C R.
Theorem

Let S be an insertion system from |Nij4 Then, it is undecidable
whether or not L(S) is a regular language.

Conclusions

Conclusions

- Emptiness and universality are decidable for any insertion
system.

Conclusions

- Emptiness and universality are decidable for any insertion
system.

- Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).

Conclusions

- Emptiness and universality are decidable for any insertion
system.

- Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).

- Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1,1).

Conclusions

Emptiness and universality are decidable for any insertion
system.

Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).
Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1,1).

Inclusion of a regular language is undecidable for all insertion
systems having a size of at least (3,4,4).

Conclusions

Emptiness and universality are decidable for any insertion
system.

Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).
Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1,1).

Inclusion of a regular language is undecidable for all insertion
systems having a size of at least (3,4,4).

Regularity is undecidable for all insertion systems having a size
of at least (4,4,4).

Conclusions

Emptiness and universality are decidable for any insertion
system.

Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).
Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1,1).

Inclusion of a regular language is undecidable for all insertion
systems having a size of at least (3,4,4).

Regularity is undecidable for all insertion systems having a size
of at least (4,4,4).

The decidability status for insertion systems having a size
which is not covered by the above cases is unknown.

Conclusions

Emptiness and universality are decidable for any insertion
system.

Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3,4,4).
Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1,1).

Inclusion of a regular language is undecidable for all insertion
systems having a size of at least (3,4,4).

Regularity is undecidable for all insertion systems having a size
of at least (4,4,4).

The decidability status for insertion systems having a size
which is not covered by the above cases is unknown.

Study generalized systems such as graph-controlled insertion
systems or matrix insertion grammars of small size which are
known to be computationally incomplete.

