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Insertion Systems

Ü Introduced in 1981 by Galiukschov as semicontextual
grammars.

Ü Idea: Start with a finite set of axioms and iteratively apply
insertion rules which insert strings subject to certain contexts.

Ü Insertion Systems are an intermediate model between
Chomsky grammars and contextual grammars.

Ü Strings are only inserted as in contextual grammars and not
rewritten as in Chomsky grammars.

Ü The insertion is controlled by contexts as is done in
context-sensitive (Chomsky) grammars.

Ü Insertion systems are a special case of insertion-deletion
systems which have extensively been investigated.
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Insertion Systems

An insertion system S is a triple S = 〈T,A, I〉, where

Ü T is an alphabet,

Ü A ⊆ T ∗ is a finite set of axioms, and

Ü I ⊆ T ∗ × T+ × T ∗ is a finite set of insertion rules.

For x, y ∈ T ∗ we write x⇒ y, if x = x1uvx2 and y = x1uαvx2 for
(u, α, v) ∈ I and x1, x2 ∈ T ∗.

The generated language is L(S) = {w | x⇒∗ w for some x ∈ A }.

The size of an insertion system is defined by the vector (n, l, r),
where the integers n = max{ |α| | (u, α, v) ∈ I },
l = max{ |u| | (u, α, v) ∈ I }, and r = max{ |v| | (u, α, v) ∈ I }.

The family of all systems of size (n, l, r) is denoted by INSl,r
n .
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Insertion Systems

Example 1

Consider S1 = 〈{a, b}, {ab}, {(a, ab, b)}〉 ∈ INS1,1
2 .

We obtain that L(S1) = { ambm | m ≥ 1 }.
For example, ab

⇒ aabb⇒ aaabbb⇒ aaaabbbb.

Example 2

Consider S2 = 〈{a, b}, {ab, ba}, {(λ, ab, λ), (λ, ba, λ)}〉 ∈ INS0,0
2 .

We obtain that L(S2) = {w ∈ {a, b}+ | |w|a = |w|b }.
For example, ab

⇒ aabb⇒ aababb⇒ aabababb.
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Insertion Systems

Example 3

S3 = 〈{a, b, c, d}, {ab}, {(a, c, b), (c, d, b), (c, a, d), (a, b, d)}〉 be-
longs to INS1,1

1 .

We obtain that L(S3) = { (ac)mx(db)m | m ≥ 0, x ∈ {ab, acb} }∪
{ (ac)mx(db)m | m ≥ 1, x ∈ {λ, a} } is not regular.

For example, ab

⇒ acb⇒ acdb⇒ acadb⇒ acabdb.
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Insertion Systems

Theorem

(1) For every INSm,n
∗ an equivalent context-sensitive

grammar can be constructed for all m,n ≥ 0.

(2) L (INS0,0∗ ) ⊂ L (INS1,1∗ ) ⊂ L (INS2,2∗ ) . . . ⊂ L (INS∗∗).

(3) INSm,n
∗ is incomparable with REG for all m,n ≥ 0.

(4) For every INS1,1∗ an equivalent context-free grammar
can be constructed.

(5) L (INS2,22 ) contains a non-semilinear language.

(6) L (INSm,n
∗ ) is incomparable with CFL for all m,n ≥ 2.

(7) L (INSm,n
∗ ) is an anti-AFL for all m,n ≥ 0.
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Decidability Questions for Insertion Systems

Ü Almost no decidability results are known.

Theorem

Let S be an INSl,r
n with n ≥ 1 and l, r ≥ 0. Then, it is decidable in

deterministic polynomial time whether or not L(S) is empty.

Theorem

The fixed membership problem for L (INSl,r
n ) having n ≥ 1 and

l, r ≥ 0 is solvable in deterministic polynomial time.

Theorem

Let S be an INSl,r
n with n ≥ 1 and l, r ≥ 0. Then, it is decidable

whether or not L(S) is equal to T ∗.
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Br$rar$rbr$rcrrC
Br$rar$rbr$rcrllrC
Br$rar$rbr$rcllrllrC
Br$rar$rbr$rcllrl&lrC
Br$rar$rbr$rllcllrl&lrC
Br$rar$rbr$rllcl&lrl&lrC
Br$rar$rbr$llrllcl&lrl&lrC
Br$rar$rbr$llrl&lcl&lrl&lrC
Br$rar$rbrll$llrl&lcl&lrl&lrC
Br$rar$rbrll$l&lrl&lcl&lrl&lrC
Br$rar$rbllrll$l&lrl&lcl&lrl&lrC
Br$rar$rbllrl&l$l&lrl&lcl&lrl&lrC
Br$rar$rllbllrl&l$l&lrl&lcl&lrl&lrC
Br$rar$rllbl&lrl&l$l&lrl&lcl&lrl&lrC
Br$rar$llrllbl&lrl&l$l&lrl&lcl&lrl&lrC
Br$rar$llrl&lbl&lrl&l$l&lrl&lcl&lrl&lrC
Br$rarll$llrl&lbl&lrl&l$l&lrl&lcl&lrl&lrC
. . .



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü Configurations are words consisting of a center part containing
the current state and the information whether or not
Counter 1 and Counter 2 are zero,

Ü a right part that contains the current value of Counter 1, and

Ü a left part that contains the current value of Counter 2.

Ü The axiom is B=2s0=1C.

Ü Knowing the center part =2s0=1 the next state can be
determined according to the transition function and the
current value of Counter 1 or Counter 2 has to be changed.

Ü The current value m of a counter will be encoded by m
symbols 1 in the left or right part of the word.
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whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability of Finiteness

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü To decrease a counter we have to make a valid 1 invalid.

Ü Symbol 1 has the meaning that a subsequent 1 is invalid and
does not count for the current value of the counter.

Ü Send a signal which checks whether there is a valid 1,

Ü make this 1 invalid by inserting 1 in front of it,

Ü check whether there is another valid 1. If so, the counter is
non-zero and it is zero otherwise.

Ü Send this information back to the center and update the state
and the status of the counter.

Ü All tasks can be realized with the constructions provided.



Undecidability Results

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü The insertion system generates finitely many words if and only
if the two-counter machine halts.

Theorem

Let S be an insertion system from INS4,4
3 and R be a regular lan-

guage. Then, it is undecidable whether or not L(S) ⊆ R.

Theorem

Let S be an insertion system from INS4,4
4 Then, it is undecidable

whether or not L(S) is a regular language.



Undecidability Results

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü The insertion system generates finitely many words if and only
if the two-counter machine halts.

Theorem

Let S be an insertion system from INS4,4
3 and R be a regular lan-

guage. Then, it is undecidable whether or not L(S) ⊆ R.

Theorem

Let S be an insertion system from INS4,4
4 Then, it is undecidable

whether or not L(S) is a regular language.



Undecidability Results

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü The insertion system generates finitely many words if and only
if the two-counter machine halts.

Theorem

Let S be an insertion system from INS4,4
3 and R be a regular lan-

guage. Then, it is undecidable whether or not L(S) ⊆ R.

Theorem

Let S be an insertion system from INS4,4
4 Then, it is undecidable

whether or not L(S) is a regular language.



Undecidability Results

Theorem

Let S be an insertion system from INS4,4
3 . Then, it is undecidable

whether or not L(S) is finite.

Ü The insertion system generates finitely many words if and only
if the two-counter machine halts.

Theorem

Let S be an insertion system from INS4,4
3 and R be a regular lan-

guage. Then, it is undecidable whether or not L(S) ⊆ R.

Theorem

Let S be an insertion system from INS4,4
4 Then, it is undecidable

whether or not L(S) is a regular language.



Conclusions

Ü Emptiness and universality are decidable for any insertion
system.

Ü Finiteness and inclusion in a regular language is undecidable
for all insertion systems having a size of at least (3, 4, 4).

Ü Equality and inclusion is undecidable for all insertion systems
having a size of at least (5, 1, 1).

Ü Inclusion of a regular language is undecidable for all insertion
systems having a size of at least (3, 4, 4).

Ü Regularity is undecidable for all insertion systems having a size
of at least (4, 4, 4).

Ü The decidability status for insertion systems having a size
which is not covered by the above cases is unknown.

Ü Study generalized systems such as graph-controlled insertion
systems or matrix insertion grammars of small size which are
known to be computationally incomplete.
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