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Online Minimization Problem

Online Minimization Problem

I is set of possible inputs; I ∈ I is input; I = (x1, . . . ,xn);
O = (y1, . . . ,yn) is feasible output for I;
cost (I,O) is cost of output O for input I;
O′ is optimal, if cost (I,O′) is smallest.

Deterministic Online Algorithm

A computes A(I) = (y1, . . . ,yn);
yi depends on x1, . . . ,xi.

Competitive Ratio

Opt (I) is optimal offline solution;
A is c-competitive, if there is constant
α > 0 such that for any I ∈ I:
cost (I,A(I)) ≤ c · cost (I,Opt (I)) + α .
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Randomized Online Algorithms

Randomized Online Algorithm

Rψ := Rψ (I) = (y1, · · · ,yn);
yi depends on ψ ,x1, . . . ,xi;
ψ is the content of a random tape;
R is c-competitive, if ∃α > 0 : ∀I ∈ I:
E[cost (I,Rψ (I))] ≤ c · cost (I,Opt (I)) + α .

We use automata as an algorithm

We use automata as an
algorithm.
|S | = o(n);
|S | = nO(1).

J. Boyar, S. Irani, and K. Larsen, 2009;
Y. Giannakopoulos and E. Koutsoupias, 2015;
J. Boyar, K. Larsen, and A. Maiti, 2015.
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Quantum Bit

Quantum bit
State: a|0〉 + b|1〉;

a,b are complex numbers; |a|2 +
|b|2 = 1;
unitary transition: U is 2 × 2
unitary matrix;
measurement: Pr {|0〉} = |a|2;
Pr {|1〉} = |b|2.
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Quantum Automata as an Online Algorithm

Quantum Automata

t qubits, |S | = d = 2t states;

|ψ 〉 is d-dimensional complex-value vector of amplitudes;∑d
i=1

���|ψ 〉[i]
���
2
= 1;

unitary transition: U0 or U1;
we can measure some of qubits.

Quantum Online Algorithm

Q := Q (I) = (y1, · · · ,yn);
yi depends on x1, . . . ,xi,y1, . . . ,yi−1;
Q can measure qubits several times during computation;
Q is c-competitive, if ∃α > 0 : ∀I ∈ I:
E[cost (I,Q (I))] ≤ c · cost (I,Opt (I)) + α .
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Results on Sublinear Size

Theorems 3.1,3.4,3.5
For special online minimization problem (n,k,w, r )-PNH, for
w > r we have:

There is r+w
2r -competitive in expectation quantum

automaton Q with 2 quantum states.
Any deterministic automaton A with o(n) states is at least
w
r -competitive.
Any probabilistic automaton R with o(n) states is at least
r+7w
8r -competitive in expectation.
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Results on Polynomial Size

Theorems 3.6,3.8
For special online minimization problem (n,w, r )-PNEH, for
w > r we have:

There is (r (1−ε )2/2+w ( 1−ε
2

2 +ε ))/r-competitive in expectation
quantum automaton Q with O(n) quantum states.
Any deterministic automaton A with 2o(n) states is
w
r -competitive.
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Definitions of (n,k,w, r )-PNH and (n,w, r )-PNEH

r < w;
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There is 1 qubit exact quantum
automaton.

No deterministic or probabilistic
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A. Ambainis and R. Freivalds, 1998;
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EQ

There is nO(1) states quantum
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Thank you for your attention!

Thank you for your attention!
Děkuji!


