Quantum Automata for Online Minimization Problems

Kamil Khadiev^{1,2}, Aliya Khadieva²

 1 University of Latvia, Riga, Latvia, 2 Kazan Federal University, Kazan, Russia

NCMA-2017 - Prague, 2017

Definitions.

Definitions.

Results.

- Definitions.
- Results.
- Main Ideas.

Online Minimization Problem

 $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;
- O' is optimal, if cost(I, O') is smallest.

Online Minimization Problem

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;
- O' is optimal, if cost(I, O') is smallest.

Deterministic Online Algorithm

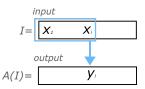
• A computes
$$A(I) = (y_1, \ldots, y_n);$$

Online Minimization Problem

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;
- O' is optimal, if cost(I, O') is smallest.

Deterministic Online Algorithm

- A computes $A(I) = (y_1, \ldots, y_n);$
- y_i depends on x_1, \ldots, x_i .

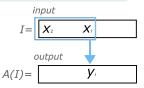


Online Minimization Problem

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;
- O' is optimal, if cost(I, O') is smallest.

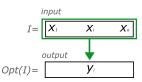
Deterministic Online Algorithm

- A computes $A(I) = (y_1, \ldots, y_n);$
- y_i depends on x_1, \ldots, x_i .



Competitive Ratio

• Opt(1) is optimal offline solution;

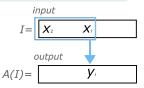


Online Minimization Problem

- $\blacksquare \ \mathcal{I}$ is set of possible inputs; $I \in \mathcal{I}$ is input; $I = (x_1, \ldots, x_n);$
- $O = (y_1, \ldots, y_n)$ is feasible output for I;
- cost(I, O) is cost of output O for input I;
- O' is optimal, if cost(I, O') is smallest.

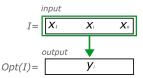
Deterministic Online Algorithm

- A computes $A(I) = (y_1, \ldots, y_n);$
- y_i depends on x_1, \ldots, x_i .



Competitive Ratio

- *Opt(I)* is optimal offline solution;
- A is c-competitive, if there is constant $\alpha > 0$ such that for any $l \in I$: $cost(l, A(l)) \le c \cdot cost(l, Opt(l)) + \alpha$.



•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

•
$$y_i$$
 depends on ψ, x_1, \ldots, x_i ;

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

- y_i depends on ψ, x_1, \ldots, x_i ;
- ψ is the content of a random tape;

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

- y_i depends on ψ, x_1, \ldots, x_i ;
- ψ is the content of a random tape;
- *R* is *c*-competitive, if $\exists \alpha > 0 : \forall I \in I$: $\mathbb{E}[cost(I, R^{\psi}(I))] \leq c \cdot cost(I, Opt(I)) + \alpha$.

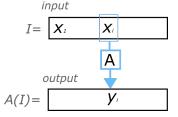
Randomized Online Algorithm

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

- y_i depends on ψ, x_1, \ldots, x_i ;
- ψ is the content of a random tape;
- *R* is *c*-competitive, if $\exists \alpha > 0 : \forall I \in I$: $\mathbb{E}[cost(I, R^{\psi}(I))] \leq c \cdot cost(I, Opt(I)) + \alpha$.

We use automata as an algorithm

• We use automata as an algorithm.



Randomized Online Algorithm

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

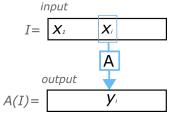
- y_i depends on ψ, x_1, \ldots, x_i ;
- ψ is the content of a random tape;
- *R* is *c*-competitive, if $\exists \alpha > 0 : \forall I \in I$: $\mathbb{E}[cost(I, R^{\psi}(I))] \leq c \cdot cost(I, Opt(I)) + \alpha$.

We use automata as an algorithm We use automata as an

algorithm.

$$|S| = o(n);$$

$$|S| = n^{O(1)}.$$



Randomized Online Algorithm

•
$$R^{\psi} := R^{\psi}(I) = (y_1, \cdots, y_n);$$

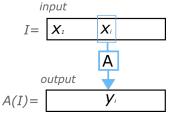
- y_i depends on ψ, x_1, \ldots, x_i ;
- ψ is the content of a random tape;
- *R* is *c*-competitive, if $\exists \alpha > 0 : \forall I \in I$: $\mathbb{E}[cost(I, R^{\psi}(I))] \leq c \cdot cost(I, Opt(I)) + \alpha$.

We use automata as an algorithm

• We use automata as an algorithm.

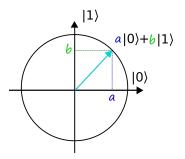
$$|S| = o(n);$$

$$|S| = n^{O(1)}.$$

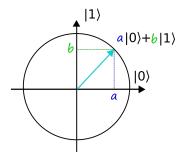


- J. Boyar, S. Irani, and K. Larsen, 2009;
- Y. Giannakopoulos and E. Koutsoupias, 2015;
- J. Boyar, K. Larsen, and A. Maiti, 2015.

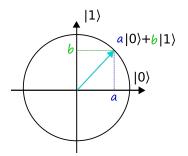
• State: $a|0\rangle + b|1\rangle$;



- State: $a|0\rangle + b|1\rangle$;
- a, b are complex numbers; $|a|^2 + |b|^2 = 1$;

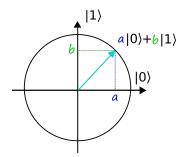


- State: $a|0\rangle + b|1\rangle$;
- a, b are complex numbers; $|a|^2 + |b|^2 = 1$;
- unitary transition: U is 2 × 2 unitary matrix;



- State: $a|0\rangle + b|1\rangle$;
- a, b are complex numbers; $|a|^2 + |b|^2 = 1$;
- unitary transition: U is 2 × 2 unitary matrix;

• measurement: $Pr\{|0\rangle\} = |a|^2$; $Pr\{|1\rangle\} = |b|^2$.



Quantum Automata

• t qubits, $|S| = d = 2^t$ states;

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

• unitary transition: U^0 or U^1 ;

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

- unitary transition: U^0 or U^1 ;
- we can measure some of qubits.

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

- \blacksquare unitary transition: U^0 or $U^1;$
- we can measure some of qubits.

Quantum Online Algorithm

$$Q := Q(I) = (y_1, \cdots, y_n);$$

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

- \blacksquare unitary transition: U^0 or $U^1;$
- we can measure some of qubits.

Quantum Online Algorithm

$$Q := Q(I) = (y_1, \cdots, y_n);$$

• y_i depends on $x_1, \ldots, x_i, y_1, \ldots, y_{i-1}$;

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

- \blacksquare unitary transition: U^0 or $U^1;$
- we can measure some of qubits.

Quantum Online Algorithm

- $Q := Q(I) = (y_1, \cdots, y_n);$
- y_i depends on $x_1, \ldots, x_i, y_1, \ldots, y_{i-1}$;
- Q can measure qubits several times during computation;

Quantum Automata

- t qubits, $|S| = d = 2^t$ states;
- $|\psi\rangle$ is *d*-dimensional complex-value vector of amplitudes;

•
$$\sum_{i=1}^{d} \left| |\psi\rangle[i] \right|^2 = 1;$$

- \blacksquare unitary transition: U^0 or $U^1;$
- we can measure some of qubits.

Quantum Online Algorithm

- $Q := Q(I) = (y_1, \cdots, y_n);$
- y_i depends on $x_1, \ldots, x_i, y_1, \ldots, y_{i-1}$;
- Q can measure qubits several times during computation;
- $Q \text{ is } c\text{-competitive, if } \exists \alpha > 0 : \forall l \in I : \\ \mathbb{E}[cost(l, Q(l))] \le c \cdot cost(l, Opt(l)) + \alpha.$

Theorems 3.1, 3.4, 3.5

For special online minimization problem (n,k,w,r)-PNH, for w>r we have:

Theorems 3.1, 3.4, 3.5

For special online minimization problem (n,k,w,r)-PNH, for w>r we have:

There is $\frac{r+w}{2r}$ -competitive in expectation quantum automaton Q with 2 quantum states.

Theorems 3.1, 3.4, 3.5

For special online minimization problem (n,k,w,r)-PNH, for w>r we have:

- There is $\frac{r+w}{2r}$ -competitive in expectation quantum automaton Q with 2 quantum states.
- Any deterministic automaton A with o(n) states is at least $\frac{w}{r}$ -competitive.

Theorems 3.1, 3.4, 3.5

For special online minimization problem (n,k,w,r)-PNH, for w>r we have:

- There is $\frac{r+w}{2r}$ -competitive in expectation quantum automaton Q with 2 quantum states.
- Any deterministic automaton A with o(n) states is at least $\frac{w}{r}$ -competitive.
- Any probabilistic automaton R with o(n) states is at least $\frac{r+7w}{8r}$ -competitive in expectation.

Theorems 3.6, 3.8

For special online minimization problem (n,w,r)-PNEH, for w>r we have:

Theorems 3.6, 3.8

For special online minimization problem (n,w,r)-PNEH, for w>r we have:

There is $(r(1-\varepsilon)^2/2 + w(\frac{1-\varepsilon^2}{2} + \varepsilon))/r$ -competitive in expectation quantum automaton Q with O(n) quantum states.

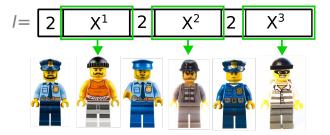
Theorems 3.6, 3.8

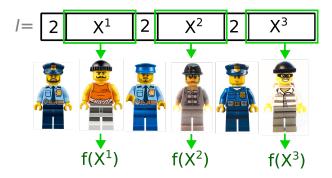
For special online minimization problem (n,w,r)-PNEH, for w>r we have:

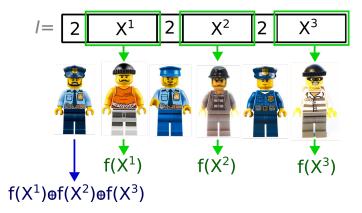
- There is $(r(1-\varepsilon)^2/2 + w(\frac{1-\varepsilon^2}{2} + \varepsilon))/r$ -competitive in expectation quantum automaton Q with O(n) quantum states.
- Any deterministic automaton A with $2^{o(n)}$ states is $\frac{w}{r}$ -competitive.

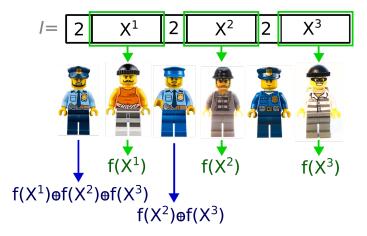
$$I = \begin{bmatrix} 2 & X^1 & 2 & X^2 & 2 & X^3 \end{bmatrix}$$

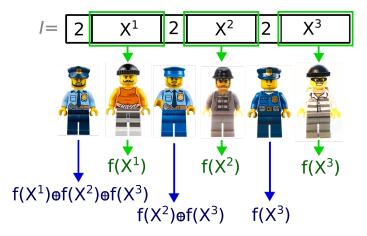
$$\mathbf{x} = \begin{bmatrix} \mathbf{2} & \mathbf{x}^1 & \mathbf{2} & \mathbf{x}^2 & \mathbf{2} & \mathbf{x}^3 \end{bmatrix}$$

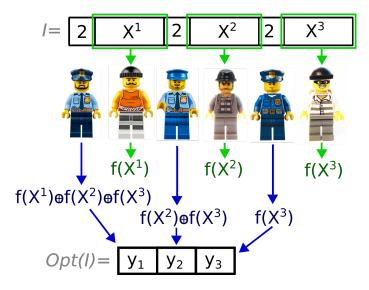




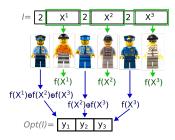






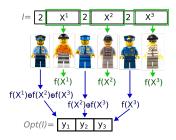


 \blacksquare r < w;



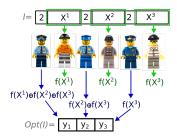
 $\bullet r < w;$

•
$$cost(I, O) = r$$
, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$
and $y_3 = f(X_3)$;



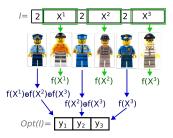
- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;

• cost(I, O) = w, otherwise.



- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

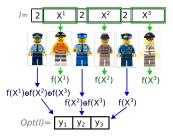
(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$



- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

• Let
$$\#_1(X) = v \cdot 2^k$$
;

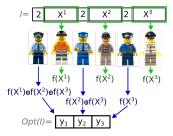


- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

• Let
$$\#_1(X) = v \cdot 2^k$$
;

•
$$PartialMOD_k(X) = v \mod 2.$$

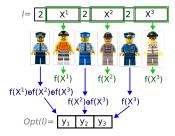


- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

- Let $\#_1(X) = v \cdot 2^k$;
- $PartialMOD_k(X) = v \mod 2.$

(n, w, r)-PNEH: f(X) = EQ(X)



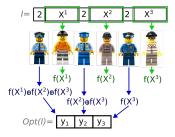
- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

- Let $\#_1(X) = v \cdot 2^k$;
- $PartialMOD_k(X) = v \mod 2.$

(n, w, r)-PNEH: f(X) = EQ(X)

• let
$$X = \sigma_1, \ldots, \sigma_m, 3, \gamma_1, \ldots, \gamma_t;$$



- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

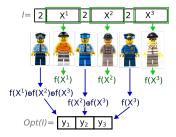
(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

- Let $\#_1(X) = v \cdot 2^k$;
- Partial $MOD_k(X) = v \mod 2$.

(n, w, r)-PNEH: f(X) = EQ(X)

• let
$$X = \sigma_1, \ldots, \sigma_m, 3, \gamma_1, \ldots, \gamma_t;$$

• let
$$bin(\sigma_1,\ldots,\sigma_m) = \sum_{i=1}^m 2^{i-1}\sigma_i;$$



- $\bullet r < w;$
- cost(I, O) = r, if $y_1 = f(X_1) \oplus f(X_2) \oplus f(X_3)$, $y_2 = f(X_2) \oplus f(X_3)$ and $y_3 = f(X_3)$;
- cost(I, O) = w, otherwise.

(n, k, w, r)-PNH: $f(X) = PartialMOD_k(X)$

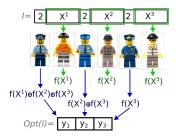
- Let $\#_1(X) = v \cdot 2^k$;
- $PartialMOD_k(X) = v \mod 2.$

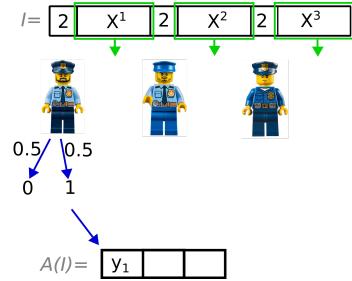
(n, w, r)-PNEH: f(X) = EQ(X)

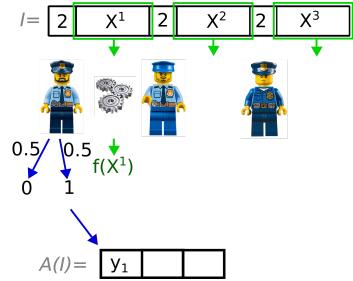
• let
$$X = \sigma_1, \ldots, \sigma_m, 3, \gamma_1, \ldots, \gamma_t;$$

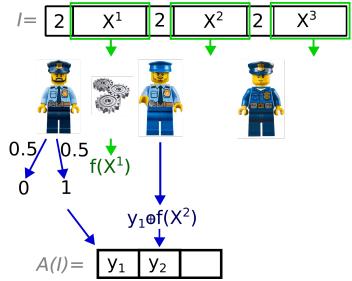
• let
$$bin(\sigma_1,\ldots,\sigma_m) = \sum_{i=1}^m 2^{i-1}\sigma_i;$$

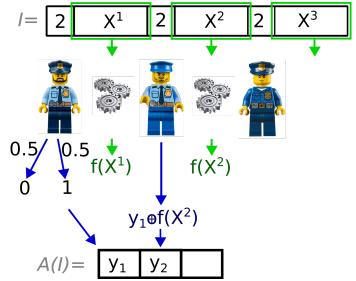
$$EQ(X) = 1, \text{ iff } bin(\sigma_1, \ldots, \sigma_m) = bin(\gamma_1, \ldots, \gamma_t).$$

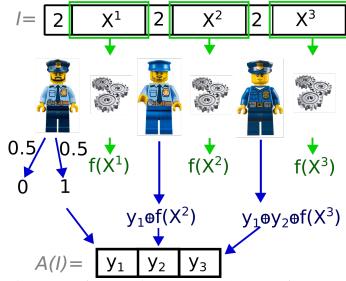






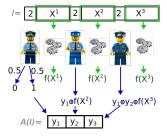






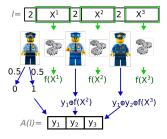
A. Ambainis and A. Yakaryılmaz, 2012: *PartialMOD_k*

• There is 1 qubit exact quantum automaton.



A. Ambainis and A. Yakaryılmaz, 2012: $PartialMOD_k$

- There is 1 qubit exact quantum automaton.
- No deterministic or probabilistic automaton with less than 2^k states.

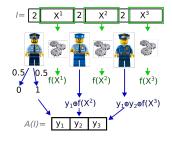


A. Ambainis and A. Yakaryılmaz, 2012: $PartialMOD_k$

- There is 1 qubit exact quantum automaton.
- No deterministic or probabilistic automaton with less than 2^k states.

A. Ambainis and R. Freivalds, 1998;F. Ablayev and A. Vasilyev, 2009:EQ

- There is $n^{O(1)}$ states quantum automaton with one side error ε .
- No deterministic automaton with $2^{o(n)}$ states.



Thank you for your attention! Děkuji!