Two-Sided Strictly Locally Testable Languages

Markus Holzer Martin Kutrib Friedrich Otto

Institut für Informatik, Universität Giessen, Germany
Fachbereich Elektrotechnik/Informatik, Universität Kassel, Germany
Overview

- Two-Sided Strictly Locally Testable Languages
- Expressive Capacity
- Learnability in the Limit
- Decidability Problems
- Closure Properties
Overview

- Two-Sided Strictly Locally Testable Languages
- Expressive Capacity
- Learnability in the Limit
- Decidability Problems
- Closure Properties
Overview

- Two-Sided Strictly Locally Testable Languages
- Expressive Capacity
- Learnability in the Limit
- Decidability Problems
- Closure Properties
Overview

- Two-Sided Strictly Locally Testable Languages
- Expressive Capacity
- Learnability in the Limit
- Decidability Problems
- Closure Properties
Overview

- Two-Sided Strictly Locally Testable Languages
- Expressive Capacity
- Learnability in the Limit
- Decidability Problems
- Closure Properties
Two-Sided Strictly Locally Testable Languages

Standard Languages

Standard language: $L \subseteq \Sigma^*$ can be described by three sets $A, B \subseteq \Sigma$ and $C \subseteq \Sigma^2$ such that

$$L = (A\Sigma^* \cap \Sigma^* B) \setminus \Sigma^* F \Sigma^*$$

where $F = \Sigma^2 \setminus C$ is the set of forbidden factors.
Two-Sided Strictly Locally Testable Languages

Standard Languages

Standard language: $L \subseteq \Sigma^*$ can be described by three sets $A, B \subseteq \Sigma$ and $C \subseteq \Sigma^2$ such that

$$L = (A\Sigma^* \cap \Sigma^* B) \setminus \Sigma^* F\Sigma^*$$

where $F = \Sigma^2 \setminus C$ is the set of forbidden factors.

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Chomsky and Schützenberger 1963]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every regular language is the letter-to-letter homomorphich image of a standard language.</td>
<td></td>
</tr>
</tbody>
</table>
Strictly k-testable language: $L \subseteq \Sigma^*$ can be described by three sets $A, B, C \subseteq \Sigma^k$ such that, if $|w| \geq k$ then $w \in L$ if and only if

its prefix of length k is in A, its suffix of length k is in B, and all inner factors of length k belong to C.

Example

The language $L = \{a^m b^n | m, n \geq 1\}$ is strictly 2-testable:
Set $A = \{aa, ab\}$, $B = \{ab, bb\}$, and $C = \{aa, ab, bb\}$.

$a$$a$$a$$a$$b$$b$$b$$\in A \✓$
Two-Sided Strictly Locally Testable Languages

Strictly k-testable language: $L \subseteq \Sigma^*$ can be described by three sets $A, B, C \subseteq \Sigma^k$ such that, if $|w| \geq k$ then $w \in L$ if and only if

its prefix of length k is in A, its suffix of length k is in B, and all inner factors of length k belong to C.

Example

The language $L = \{a^m b^n \mid m, n \geq 1\}$ is strictly 2-testable:

Set $A = \{aa, ab\}$, $B = \{ab, bb\}$, and $C = \{aa, ab, bb\}$.

Example of word $aaabbb$:

\[
\begin{array}{ccccccc}
 a & a & a & a & b & b & b \\
\end{array}
\]

$\in A \surd$
Two-Sided Strictly Locally Testable Languages

Strictly k-testable language: $L \subseteq \Sigma^*$ can be described by three sets $A, B, C \subseteq \Sigma^k$ such that, if $|w| \geq k$ then $w \in L$ if and only if

its prefix of length k is in A, its suffix of length k is in B, and all inner factors of length k belong to C.

Example
The language $L = \{ a^m b^n | m, n \geq 1 \}$ is strictly 2-testable:

Set $A = \{ aa, ab \}$, $B = \{ ab, bb \}$, and $C = \{ aa, ab, bb \}$.

∈ C ✓
Two-Sided Strictly Locally Testable Languages

Strictly k-testable language: $L \subseteq \Sigma^*$ can be described by three sets $A, B, C \subseteq \Sigma^k$ such that, if $|w| \geq k$ then $w \in L$ if and only if

- its prefix of length k is in A,
- its suffix of length k is in B,
- and all inner factors of length k belong to C.

Example

The language $L = \{ a^m b^n \mid m, n \geq 1 \}$ is strictly 2-testable:

Set $A = \{ aa, ab \}$, $B = \{ ab, bb \}$, and $C = \{ aa, ab, bb \}$.

\[
\begin{array}{ccccccc}
 a & a & a & a & b & b & b \\
\end{array}
\]

$\in C \ \checkmark$
Strictly \(k \)-testable language: \(L \subseteq \Sigma^* \) can be described by three sets \(A, B, C \subseteq \Sigma^k \) such that, if \(|w| \geq k \) then \(w \in L \) if and only if

its prefix of length \(k \) is in \(A \),
its suffix of length \(k \) is in \(B \),
and all inner factors of length \(k \) belong to \(C \).

Example
The language \(L = \{ a^m b^n \mid m, n \geq 1 \} \) is strictly 2-testable:

Set \(A = \{ aa, ab \} \), \(B = \{ ab, bb \} \), and \(C = \{ aa, ab, bb \} \).

\[
\begin{array}{cccccc}
 a & a & a & a & b & b & b \\
\end{array}
\]

\(\in C \) \(\checkmark \)
Two-Sided Strictly Locally Testable Languages

Strictly k-testable language: $L \subseteq \Sigma^*$ can be described by three sets $A, B, C \subseteq \Sigma^k$ such that, if $|w| \geq k$ then $w \in L$ if and only if

its prefix of length k is in A, its suffix of length k is in B, and all inner factors of length k belong to C.

Example

The language $L = \{a^m b^n \mid m, n \geq 1\}$ is strictly 2-testable:

Set $A = \{aa, ab\}$, $B = \{ab, bb\}$, and $C = \{aa, ab, bb\}$.

$$a \ a \ a \ a \ b \ b \ b \ \in \ C \ \checkmark$$
Strictly \(k \)-testable language: \(L \subseteq \Sigma^* \) can be described by three sets \(A, B, C \subseteq \Sigma^k \) such that, if \(|w| \geq k \) then \(w \in L \) if and only if

- its prefix of length \(k \) is in \(A \),
- its suffix of length \(k \) is in \(B \),
- and all inner factors of length \(k \) belong to \(C \).

Example
The language \(L = \{ a^m b^n \mid m, n \geq 1 \} \) is strictly 2-testable:

Set \(A = \{ aa, ab \}, B = \{ ab, bb \}, \) and \(C = \{ aa, ab, bb \} \).
A. Rosenberg 1967: Double-head finite automata characterize the linear context-free languages.

B. Nagy 2015: Double-head pushdown automata accept linguistically important languages and describe a family of mildly context-sensitive languages.
Two-Sided Strictly Locally Testable Languages

Idea: Two windows of some size k move across the input, one from left to right and the other from right to left.
Two-Sided Strictly Locally Testable Languages

Idea: Two windows of some size k move across the input, one from left to right and the other from right to left.

But: The families of strictly k-testable languages are closed under intersection.
Two-Sided Strictly Locally Testable Languages

Idea: Two windows of some size k move across the input, one from left to right and the other from right to left.

But: The families of strictly k-testable languages are closed under intersection.

Therefore: The windows move simultaneously and the factors scanned have to be in relation.
Two-Sided Strictly Locally Testable Languages

Idea: Two windows of some size k move across the input, one from left to right and the other from right to left.

But: The families of strictly k-testable languages are closed under intersection.

Therefore: The windows move simultaneously and the factors scanned have to be in relation.

Two-sided strictly k-testable language: $L \subseteq \Sigma^*$ is given through a strictly k-testable language H and a binary relation $R \subseteq \Sigma^k \times \Sigma^k$. If $|w| \geq k$ then $w \in L$ if and only if $w \in H$ and, for all indices $i \in \{1, 2, \ldots, |w| - k + 1\}$, $(w[i, k], w[|w| + 2 - k - i, k]) \in R$.
Two-Sided Strictly Locally Testable Languages

Example
There is a two-sided strictly 1-testable language L such that
$L \cap a^* b^* = \{ a^n b^n \mid n \geq 1 \}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.

```
  a  a  a  b  b  b
```
Example
There is a two-sided strictly 1-testable language \(L \) such that
\[L \cap a^* b^* = \{ a^n b^n \mid n \geq 1 \} : \]
Set \(A = B = C = \{ a, b \} \) and \(R = \{ (a, b), (b, a) \} \).
Example

There is a two-sided strictly 1-testable language L such that $L \cap a^*b^* = \{a^n b^n \mid n \geq 1\}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.
Two-Sided Strictly Locally Testable Languages

Example
There is a two-sided strictly 1-testable language L such that $L \cap a^*b^* = \{ a^n b^n \mid n \geq 1 \}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.

\[
\begin{array}{cccccc}
 a & a & a & b & b & b \\
\end{array}
\]

$\in R \checkmark$

$\in C \checkmark \in C \checkmark$
Two-Sided Strictly Locally Testable Languages

Example

There is a two-sided strictly 1-testable language L such that $L \cap a^*b^* = \{ a^n b^n \mid n \geq 1 \}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.

$\in R \checkmark$

$\in C \checkmark \in C \checkmark$
Two-Sided Strictly Locally Testable Languages

Example
There is a two-sided strictly 1-testable language L such that
$L \cap a^*b^* = \{ a^n b^n \mid n \geq 1 \}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.

\[
\begin{array}{c}
\in R \checkmark \\
\in C \checkmark & \in C \checkmark \\
\end{array}
\]
Example

There is a two-sided strictly 1-testable language L such that $L \cap a^*b^* = \{ a^n b^n \mid n \geq 1 \}$:

Set $A = B = C = \{a, b\}$ and $R = \{(a, b), (b, a)\}$.
The classes $2\text{SLT}(k)$, for $k \geq 1$, are incomparable to the classes REG, LIN, DLIN, DCFL, and CRL.

<table>
<thead>
<tr>
<th>REG</th>
<th>LIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLT</td>
<td>2SLT</td>
</tr>
<tr>
<td>$\text{SLT}(k + 1)$</td>
<td>$\text{2SLT}(k + 1)$</td>
</tr>
<tr>
<td>SLT(k)</td>
<td>2SLT(k)</td>
</tr>
</tbody>
</table>
Expressive Capacity

- $\text{SLT} \subset \text{REG}$
- $\text{SLT}(k) \subset \text{SLT}(k+1)$
- $\text{SLT}(k) \subset 2\text{SLT}(k)$
Expressive Capacity

→ SLT ⊂ REG
→ SLT\(^{(k)}\) ⊂ SLT\(^{(k + 1)}\)
→ SLT\(^{(k)}\) ⊂ 2SLT\(^{(k)}\)

Theorem

The classes 2SLT and 2SLT\(^{(k)}\), for \(k \geq 1\), are incomparable to the classes REG, DLIN, DCFL, and CRL.
Lemma

For all $k \geq 1$,
\[
\{ab^{k+1}\} \in \text{SLT}(k + 1) \setminus 2\text{SLT}(k).
\]

Theorem

The classes 2SLT and $\text{2SLT}(k)$, for $k \geq 1$, are incomparable to the classes REG, DLIN, DCFL, and CRL.
Expressive Capacity

Theorem

2SLT ⊂ LIN.

Theorem

The classes 2SLT and 2SLT(k), for k ≥ 1, are incomparable to the classes REG, DLIN, DCFL, and CRL.
Expressive Capacity

→ A unary language belongs to SLT(k) if and only if it belongs to 2SLT(k).

Question: Do SLT(k) and 2SLT(k) coincide for regular languages?
Expressive Capacity

→ A unary language belongs to SLT(k) if and only if it belongs to 2SLT(k).

Question: Do SLT(k) and 2SLT(k) coincide for regular languages?

Answer: No

Theorem

There is a language belonging to (2SLT(1) ∩ REG) \ SLT.

Witness language: $L_r = \{ ac^n b, bc^n a \mid n \geq 0 \}$.
Learnability in the Limit

A positive presentation of a language L is an infinite sequence \(\{w_j\}_{j=1}^{\infty} \) of words from L such that every $w \in L$ occurs at least once in the sequence.
A positive presentation of a language L is an infinite sequence $\{w_j\}_{j=1}^{\infty}$ of words from L such that every $w \in L$ occurs at least once in the sequence.

Identifying in the limit from positive data: There must exist an algorithm A that returns a conjecture automaton (grammar) M_j for any input $\{w_1, w_2, \ldots, w_j\}$ such that, for any positive presentation of L, there is a $j_0 \geq 1$ with $L(M_j) = L(M_{j+1}) = L$, for all $j \geq j_0$.
Learnability in the Limit

A **positive presentation** of a language L is an infinite sequence $\{w_j\}_{j=1}^\infty$ of words from L such that every $w \in L$ occurs at least once in the sequence.

Identifying in the limit from positive data: There must exist an algorithm A that returns a conjecture automaton (grammar) M_j for any input $\{w_1, w_2, \ldots, w_j\}$ such that, for any positive presentation of L, there is a $j_0 \geq 1$ with $L(M_j) = L(M_{j+1}) = L$, for all $j \geq j_0$.

Learnable in the limit from positive data: A class of languages \mathcal{L} is learnable in the limit from positive data if there exists an algorithm A that, for each $L \in \mathcal{L}$, identifies L in the limit from positive data.
Learnability in the Limit

Theorem [Gold 1967]

Any class of languages including all finite languages and at least one infinite language is not learnable in the limit from positive data only.
Learnability in the Limit

Theorem [Gold 1967]

Any class of languages including all finite languages and at least one infinite language is **not** learnable in the limit from positive data only.

Theorem [Yokomori, Kobayashi 1998]

For any $k \geq 1$, the family of strictly k-testable languages is learnable in the limit from positive data.
Learnability in the Limit

Learning Algorithm:

Input: an integer $k \geq 1$ and a positive presentation $\{w_j\}_{j=1}^{\infty}$ of a two-sided strictly k-testable language L.

Output: a sequence of linear grammars G_j generating two-sided strictly k-testable languages such that

(i) for each $j \geq 0$, $L(G_j) \subseteq L(G_{j+1}) \subseteq L$, and

(ii) there exists $j_0 \geq 1$ such that, for each $j \geq j_0$, $G_j = G_{j+1}$, and $L(G_j) = L$.

Learnability in the Limit

Theorem

For any $k \geq 1$, the family of two-sided strictly k-testable languages is learnable in the limit from positive data.
Theorem

For any $k \geq 1$, the family of two-sided strictly k-testable languages is learnable in the limit from positive data.

Remark

The families SLT and 2SLT are not learnable in the limit from positive data.
Decidability Problems

Basic properties

- Finiteness, infiniteness, and emptiness are decidable in polynomial time for two-sided strictly locally testable languages.
Decidability Problems

Universality

- Universality is undecidable for linear context-free languages.

Theorem

Universality is decidable in linear time for two-sided strictly locally testable languages.
Decidability Problems

Universality – Regular Inclusion Problem

INSTANCE: A regular language S and a two-sided strictly k-testable language L.

QUESTION: Is S contained in L?
Decidability Problems

Universality – Regular Inclusion Problem

INSTANCE: A regular language S and a two-sided strictly k-testable language L.

QUESTION: Is S contained in L?

Theorem

The regular inclusion problem is decidable for two-sided strictly locally testable languages.
Decidability Problems

Regular Equality Problem

INSTANCE: A regular language \(S \) and a two-sided strictly \(k \)-testable language \(L \).

QUESTION: Is \(S = L \)?

→ Essentially, this question reduces to the questions of whether the inclusion \(L \subseteq S \) is true.

→ \(L \subseteq S \) if and only if \(L \cap \overline{S} = \emptyset \).
Decidability Problems

Regular Equality Problem

INSTANCE: A regular language S and a two-sided strictly k-testable language L.

QUESTION: Is $S = L$?

Essentially, this question reduces to the questions of whether the inclusion $L \subseteq S$ is true.

$L \subseteq S$ if and only if $L \cap \overline{S} = \emptyset$.

Theorem

The regular equality problem is decidable for two-sided strictly locally testable languages.
Decidability Problems

General Inclusion and Equivalence

Theorem

For any $k \geq 1$, the inclusion and equivalence problems for two-sided strictly k-testable languages are decidable in polynomial time.
Decidability Problems

Theorem

It is decidable whether a given two-sided strictly k-testable language is strictly k-testable.

Open Problem

The decidability status of the regularity problem for two-sided strictly k-testable languages is open.
Closure Properties

<table>
<thead>
<tr>
<th>Language class</th>
<th>(c)</th>
<th>(\cup)</th>
<th>(\cap)</th>
<th>(R)</th>
<th>(\cdot)</th>
<th>(*)</th>
<th>(h_{\text{len.pres.}})</th>
<th>(h_{\text{len.pres.}}^{-1})</th>
<th>(h_\lambda^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SLT</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
<tr>
<td>2SLT((k))</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\checkmark)</td>
<td>(\checkmark)</td>
<td>(\times)</td>
</tr>
</tbody>
</table>